Table of Contents Table of Contents
Previous Page  18 / 54 Next Page
Information
Show Menu
Previous Page 18 / 54 Next Page
Page Background

MAKALE

BETON PREFABRİKASYON

KASIM 2016

SAYI : 120

18

lirlenmesi”, Selçuk Üniversitesi

Mühendislik-Bilim ve Teknoloji

Dergisi S.Ü. Müh. Bilim ve Tekn.

Derg., c.1, s.1, 2013 Selcuk Univ.

J. Eng. Sci. Tech., v.1, n.1, 2013

ISSN: 2147-9364 (Elektronik).

3 Ozen M. Investigation of relation-

ship between aggregate shape

parameters and concrete strength

using imaging techniques. Anka-

ra, Turkey, 2007. Master Thesis,

Graduate School of Natural and

Applied Sciences of Middle East

Technical University in Ankara.

4 Basyıgıt C., Comak B., Kılıcars-

lan S., Uncu I.S. Assessment of

concrete com-pressive strength

by image processing tech-

nique. Construction and Building

Materials. 2012, 37, pp. 526-

532,

doi:10.1016/j.conbuild-

mat.2012.07.055.

5 German S. A. (2013). Automated

damage assessment of reinforced

concrete columns for post-earth-

quake evaluations” Doktora Tezi,

Georgia Institute of Technology.

6 Lee S., Chang L. M., Skibniewski

M. (2006). Automated recognition

of surface defects using digital

color image processing, Automa-

tion in Construction 15 (2006)

540 - 549, doi: 10.1016/j.aut-

con.2005.08.001.

7 Yamaguchi T., Hashimoto S.

(2010). Fast crack detection meth-

od for large-size concrete surface

images using percolation-based

image processing Machine Vision

and Applications (2010) 21:797–

809, doi: 10.1007/s00138-009-

0189-8.

8 Santemiz P., Alyüz N., Alagöz

F. “Uydu Görüntülerinden Dep-

rem Sonrası Hasar Tespiti”,

http://www.cmpe.boun.edu.

tr/~santemiz/papers/deprem07-

TR.pdf.

9 Zhu Z., German S., Brilakis I.

(2011). Visual retrieval of concrete

crack properties for automated

post-earthquake structural safety

evaluation, Automation in Con-

struction 20 (2011) 874-883, doi:

10.1016/j.autcon.2011.03.004.

10 Paal S. G., Jeon J., Brilakis I., Des

Roches R. (2014). Automated

Damage Index Estimation of Rein-

forced Concrete Columns for Post-

Earthquake Evaluations, Journal of

Structural Engineering, ASCE, doi:

04014228.doi: 10.1061/(ASCE)

ST.1943-541X.0001200.

11 Robins, P., Austin, S., Chandler,

J., Jones, P., 2001, Cement and

Concrete Research 31 (2001)

719-729.

12 Arslan M. H. (2010). “An evalua-

tion of effective design parameters

on earthquake performance of RC

buildings using neural networks”,

Engineering Structures Volume

32, Issue 7, July 2010, Pages

1888–1898, doi:10.1016/j.engs-

truct.2010.03.010.

13 Lautour OR, Omenzetter P. (2009).

Prediction of seismic - induced

structural damage using artifi-

cial neural networks, Engineering

Structures Journal, 31, 600-606.

14 Elcordy M. F., Chang K. C., Lee

G. C., (1993). Neural networks

trained by analytically simulated

damage states, Journal of Com-

putational Civil Engineering, 7, 2,

130-145.

15 Civalek ve Ülker, 2004, Dikdörtgen

Plakların Doğrusal Olmayan Ana-

lizinde Yapay Sinir Ağı Yaklaşımı

Dikdörtgen Plakların Doğrusal Ol-

mayan Analizinde Yapay Sinir Ağı

Yaklaşımı, İMO Teknik Dergi, 2004

3171-3190, Yazı 213.

16 Dantas, A., T., A., Leite, M., B.,

Nagahama, K., J., Prediction of

compressive strength of concrete

ontaining construction and demo-

lition waste using artificial neural

networks, Construction and Build-

ing Materials 38 (2013) 717-722.

17 Doğan, G., Arslan, M.H., Baykan,

Ö.K., “ New Approaches about the

Damage Estimation of Reinforced

Concrete Buildings after Earth-

quake: Detecting the Damage of

Columns with Image Analysis”,

12

th

International Congress on Ad-

vanced in Civil Engineering (ACE),

2016, Istanbul, Turkey.

18 Doğan, G. “Betonarme Kolonların

Deprem Sonrası Hasar Seviyeleri-

nin Akıllı Sistem Tabanlı Bir Yön-

temle Belirlenmesi”, Doktora Tezi

(Devam ediyor), Fen Bilimleri Ens-

titüsü, Selçuk Üniversitesi, Konya.